MTH 605: Topology I

Homework VI

(Due 06/11)

1. Show that cone $C X$ of a path-connected space X is contractible.
2. Show that the Mobius band deformation retracts onto its core circle, but not to its boundary circle.
3. Find all covering spaces of the Mobius band up to isomorphism. [Hint: See Example 1.42 in page 74 of Hatcher.]
4. Compute the fundamental group of the following spaces.
(a) The complement of a finite set of points in \mathbb{R}^{n}, for $n \geq 3$.
(b) The complement of a union of n lines through the origin in \mathbb{R}^{3}.
(c) The quotient space of S^{2} with its north and south poles identified.
(d) The quotient space obtained from taking two copies of $S^{1} \times S^{1}$ and identifying the circle $S^{1} \times\left\{x_{0}\right\}$ in one torus with the corresponding circle in the other torus.
(e) The complement of a finite set of points in the closed orientable surface S_{g} of genus g.
5. Suppose that a space Y is obtained from a path-connected space X by attaching n-cells for a fixed $n \geq 3$. Show that the inclusion $X \hookrightarrow Y$ induces an isomorphism of fundamental groups. Use this to show that the complement of a discrete subspace of \mathbb{R}^{n} is simply connected for $n \geq 3$.
6. The mapping torus T_{f} of a map $f: X \rightarrow X$ is the quotient of $X \times I$ obtained by identifying each point $(x, 0)$ with $(f(x), 1)$. In the case $X=S^{1} \vee S^{1}$ with f basepoint-preserving, compute a presentation for $\pi_{1}\left(T_{f}\right)$ in terms of the induced map $f_{*}: \pi_{1}(X) \rightarrow \pi_{1}(X)$. Do the same when $X=S^{1} \times S^{1}$. [Hint: Regard T_{f} as built from $X \vee S^{1}$ by attaching cells.]
